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A computational study based on the Stokes equations is conducted to investigate
the effects of gravitational forces on miscible displacements in vertical Hele-Shaw
cells. Nonlinear simulations provide the quasi-steady displacement fronts in the gap
of the cell, whose stability to spanwise perturbations is subsequently examined by
means of a linear stability analysis. The two-dimensional simulations indicate a
marked thickening (thinning) and slowing down (speeding up) of the displacement
front for flows stabilized (destabilized) by gravity. For the range investigated, the tip
velocity is found to vary linearly with the gravity parameter. Strongly stable density
stratifications lead to the emergence of flow patterns with spreading fronts, and to
the emergence of a secondary needle-shaped finger, similar to earlier observations for
capillary tube flows. In order to investigate the transition between viscously driven
and purely gravitational instabilities, a comparison is presented between displacement
flows and gravity-driven flows without net displacements.

The linear stability analysis shows that both the growth rate and the dominant
wavenumber depend only weakly on the Péclet number. The growth rate varies
strongly with the gravity parameter, so that even a moderately stable density stratifica-
tion can stabilize the displacement. Both the growth rate and the dominant wavelength
increase with the viscosity ratio. For unstable density stratifications, the dominant
wavelength is nearly independent of the gravity parameter, while it increases strongly
for stable density stratifications. Finally, the kinematic wave theory of Lajeunesse
et al. (J. Fluid Mech. vol. 398, 1999, p. 299) is seen to capture the stability limit quite
accurately, while the Darcy analysis misses important aspects of the instability.

1. Introduction
Displacements in Hele-Shaw cells are frequently employed to study generic

instability phenomena of relevance to a wide range of applications. In one such
investigation, Goyal & Meiburg (2006) focus on the viscous fingering instability of
neutrally buoyant miscible fluids. They employ Stokes simulations to obtain quasi-
steady two-dimensional base states of the flow in the gap, whose stability properties
with regard to spanwise perturbations are subsequently analysed by means of a
computational linear stability analysis. The authors find dominant wavelengths of
the order of three gap widths, which is substantially lower than the value of 5 ± 1
observed experimentally by Lajeunesse et al. (1997). However, in these experiments, a
lighter less viscous fluid displaces a heavier more viscous one downward in a vertical
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Hele-Shaw cell, so that gravitational forces affect the flow. The extent to which these
forces are responsible for the observed discrepancy in the dominant wavelength is
the primary subject of the present investigation. Lajeunesse et al. (1999) furthermore
provide a stability criterion in terms of a critical downward displacement velocity,
based on a kinematic wave theory involving gap-averaged flow quantities. We will
provide a comparison of this criterion with corresponding information derived from
a Stokes flow analysis. The configuration of a vertically oriented gap is of particular
interest for advanced oil production techniques that employ miscible flooding via
hydraulically induced fractures. Such fractures can extend several hundred feet away
from the wellbore, and they are usually oriented vertically.

The related problem of variable density and viscosity, miscible displacements in
porous media has been analysed in the context of Darcy flows (cf. Bacri, Salin &
Yortsos 1992; Manickam & Homsy 1995). Since Hele-Shaw flows frequently serve as
models of porous media displacements, it will be of interest to compare respective
predictions based on the Stokes and Darcy equations. Earlier investigations had
demonstrated considerable differences in this regard (Graf & Meiburg 2002; Goyal
& Meiburg 2004, 2006).

Studies of corresponding miscible displacements in capillary tubes are relevant to
the present investigation as well. The experiments by Petitjeans & Maxworthy (1996),
Kuang, Maxworthy & Petitjeans (2003, 2004), as well as the axisymmetric simulations
of Chen & Meiburg (1996), focus on the fraction of the more viscous fluid left
behind on the walls of the tube over a range of density and viscosity contrasts. In
different parameter regimes, these authors observe different types of axisymmetric
flow patterns, among them quasi-steady displacement fronts, and fronts characterized
by needle-shaped protrusions. As will be seen below, the present simulations reveal
the existence of similar patterns in Hele-Shaw cells.

Section 2 will define the physical problem and provide an overview over the
numerical methods employed. Section 3 presents Stokes simulation results for the
two-dimensional flow in the gap, and discusses the properties of the quasi-steady
base states. Subsequently, the stability properties of these base states with regard
to spanwise perturbations will be examined. The findings will be discussed and
summarized in § 4.

2. Problem formulation
2.1. Governing equations

Figure 1 shows the geometry of the vertical Hele-Shaw cell, with a less viscous
fluid 1 displacing a more viscous fluid 2. Either one of these two miscible
fluids can be the denser one, thus allowing gravitationally stable or unstable
configurations. Additionally, we also consider the purely gravity-driven case without a
net displacement. In this situation, the flow develops as a result of a linear instability,
with the heavier fluid sinking and the lighter fluid rising up in the Hele-Shaw cell.
For small gap widths e, the flow in both of these scenarios is governed by the
three-dimensional Stokes equations

∇ · u = 0, (2.1)

∇p = ∇ · τ + ρg, (2.2)

ct + u · ∇c = D∇2c. (2.3)



Miscible displacements in Hele-Shaw cells 359

µ1, ρ1

µ2, ρ2

e

y

z x

g

Figure 1. Geometry of the vertical Hele-Shaw cell. The less viscous fluid on top displaces
the more viscous fluid below.

Here, u denotes the flow velocity, and c indicates the relative concentration of the more
viscous fluid. τ = µ(∇u + ∇uT ) represents the viscous stress tensor for Newtonian
fluids, while D refers to the constant diffusion coefficient. z denotes the gapwise or
cross-gap direction, while x will be referred to as the spanwise direction.

Following other authors, the density ρ and the viscosity µ are assumed to be linear
and exponential functions of the concentration c, respectively,

ρ = ρ1 − c(ρ1 − ρ2) = ρ1 − c�ρ, (2.4)

µ = µ2 exp(R(c − 1)), (2.5)

R = ln
µ2

µ1

, (2.6)

where R is the logarithm of the viscosity ratio.

2.2. Scaling: displacement flows

When the less viscous fluid is driving out the more viscous one in the downward
direction, the governing equations are rendered dimensionless by introducing the
characteristic scales

L∗ = e, U ∗ = U, T ∗ =
e

U
, P ∗ =

µ2 U

e
, ρ∗ = �ρ, µ∗ = µ2, (2.7)

where U refers to the average velocity across the gap of the Hele-Shaw cell. We thus
obtain the set of dimensionless equations as

∇ · u = 0, (2.8)

∇p = ∇ · τ + Fc∇y, (2.9)

ct + u · ∇c =
1

Pe
∇2c, (2.10)

where

Pe =
Ue

D
, F =

�ρ g e2

µ2U
. (2.11)
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The Péclet number Pe indicates the relative strength of convective to diffusive
transport, while the gravity number F denotes the ratio of gravitational to viscous
forces. A heavier fluid on top results in a positive value of F . Note that an upward
displacement with an inverse density stratification is equivalent to the downward
flows considered here, so that we can limit our discussion to downward flows without
loss of generality.

2.3. Scaling: gravity driven flows

In this configuration, the length, density and viscosity scales remain unchanged. In
the absence of fluid injection, we define a buoyancy-based velocity, which leads to
new scales for time and pressure as well

U ∗ =
�ρ g e2

µ2

, T ∗ =
µ2

�ρ g e
, P ∗ = �ρ g e. (2.12)

This scaling results in the following form of the dimensionless Stokes equations

∇ · u = 0, (2.13)

∇p = ∇ · τ + c∇y, (2.14)

ct + u · ∇c =
1

Ra
∇2c, (2.15)

Thus, in the absence of a net flow, the Rayleigh number given by

Ra =
�ρ g e3

Dµ2

. (2.16)

represents the ratio of convective to diffusive effects. Note that by setting F = 1 in
(2.9), and replacing Pe in (2.10) by Ra, we recover (2.14) and (2.15), respectively.
Further, we shall employ the fact that

Ra = PeF, (2.17)

to make quantitative comparisons between the two flows throughout the text.

2.4. Numerical implementation

Nonlinear simulations of the Stokes equations in the fourth-order streamfunction
formulation are employed to obtain the two-dimensional convectively dominated base
states required for the subsequent linear stability analysis. The numerical approach
for the neutrally buoyant case is described in detail in Goyal & Meiburg (2006), and
the incorporation of the gravity term is straightforward. Once the two-dimensional
quasi-steady flow field is obtained from the direct numerical simulation, we perform
a linear stability analysis of this base state with regard to periodic perturbations in
the spanwise direction. Towards this end, the three-dimensional Stokes equations are
linearized around the aforementioned two-dimensional base state, and subsequently
discretized to give a generalized eigenvalue problem. To avoid repetition, see our
earlier work (Goyal & Meiburg 2006) for details of the numerical implementation,
solution methodology and convergence checks. Our goal is to determine the eigenvalue

σ = f (β, Pe, R, F ) (2.18)

representing the growth rate of the perturbation, along with the associated
eigenfunctions. The viscosity ratio R, the Péclet number Pe, and the gravity number
F represent the three dimensionless parameters that characterize the base flow, while
β reflects the perturbation wavenumber. The solution methodology for the gravity-
driven flow is equivalent to that for the displacement flow.
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Figure 2. Displacement flows: base state concentration fields for Pe = 2000, R = 5 and (a)
F = 0, (b) F = 100. (c)–(e) Evolution of the ‘spike’ for F = −100. (f) Streamline pattern in a
reference frame moving with the c = 0.5 contour in (e).

3. Results
3.1. Two-dimensional simulations: displacement flows

In Goyal & Meiburg (2006), we characterized the two-dimensional quasi-steady base
state by the thickness of the displacement front and its tip velocity. The front
thickness d0 was defined as the distance over which the concentration at the tip of
the quasi-steady front changes from 0.1 to 0.9, while the tip velocity is evaluated as
the propagation velocity of the c = 0.5 contour along the centreline of the cell.

Figures 2(a) and 2(b) show representative base states for Pe= 2000, R = 5 and F =0
and 100, respectively. Clearly, the evolution of the two-dimensional displacement
front is modified by the presence of gravitational effects. Figures 3(a) and 3(b)
depict the variation of d0 and Vtip, respectively, with the gravity number for Pe =
2000 and different viscosity ratios. An increase in F corresponds to increasingly
unstable density stratifications, which result in higher tip velocities and hence thinner
fronts. Over the entire range of F considered here, the Vtip, F -relationship follows
an approximate straight line for all viscosity ratios. In capillary tube experiments,
Petitjeans & Maxworthy (1996) observed a similar linear variation for comparable
values of F and Pe.

For neutrally buoyant fluids we had found the front thickness to scale with Pe−1/2

(Goyal & Meiburg 2006). Gravity forces are found not to alter this scaling for the
present range of F -values. At higher viscosity contrasts, the tip velocity is seen to
decrease with increasing Pe for all gravity numbers (not shown), in line with earlier
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Figure 3. (a) Tip thickness and (b) velocity of the quasi-steady displacement front as a
function of F for different viscosity ratios and Pe = 2000.

observations by Goyal & Meiburg (2006) for the neutrally buoyant case. This result
is in contrast to the experimental findings of Petitjeans & Maxworthy (1996) for
capillary tube displacements. In Goyal & Meiburg (2006), we were able to show that
this discrepancy is due to the assumption of an exponential viscosity–concentration
relationship. For a linear viscosity–concentration relationship, the tip velocity always
increases with Pe.

A favourable (stabilizing) density contrast (F < 0) slows the front down and thereby
reduces the strain field at the finger tip, which results in an increased front thickness.
Thus, beyond a transitional range of gravity numbers, a steep concentration front
cannot be maintained at the tip, and a quasi-steady state does not develop. In the
present study, for Pe=2000 and F < −10 different flow fields emerged, depending
on the value of R. These flow patterns are qualitatively similar to those observed in
the capillary tube investigations of Chen & Meiburg (1996), Petitjeans & Maxworthy
(1996) and Kuang et al. (2004) and in the theoretical predictions of Lajeunesse et al.
(1999) for Hele-Shaw cells.

Lajeunesse et al. (1999) studied the downward displacement of a heavier miscible
fluid by a lighter less viscous one in a Hele-Shaw cell at high flow rates. Their gap-
averaged self-similar concentration profiles displayed features of kinematic waves,
which prompted them to use kinematic wave theory to obtain a theoretical description
of the flow in the gap of the cell. Yang & Yortsos (1997) had proposed a similar
asymptotic method for analysing neutrally buoyant two-dimensional Hele-Shaw flows
in the limits of infinite Péclet number and large aspect ratios. Under these conditions
the flow away from the tip reduces to a parallel flow between two plates, and it can
be described by a conservation equation for the gap-averaged concentration. This
gap-averaged version of (2.3) takes the hyperbolic form

∂C̄(y, t)

∂t
+

∂F (y, t)

∂y
= 0, (3.1)

where

C̄(y, t) =

∫ 0.5

−0.5

c(y, z, t) dz, (3.2)
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Figure 4. Simulation data for the gap-averaged concentration of the less viscous fluid as a
function of the streamwise distance for t = 0, 0.4, 0.8, . . . , 3.2, Pe = 2000 and (a) F = −10,
R = 7, (b) F = −10, R = 1 and (c) F = −100, R = 5.

F (y, t) =

∫ 0.5

−0.5

c(y, z, t)v(y, z, t) dz, (3.3)

are the gap-averaged concentration and the mass flux of the more viscous fluid,
respectively. Thus the convective velocity of each concentration value C̄ depends on
the shape of the flux function F (C̄) and is given by

V (C̄) =
dF

dC̄
. (3.4)

A closed-form expression for the streamwise velocity component can then be derived
as a function of the specific viscosity–concentration relationship. By assuming a
step profile for the viscosity across the interface, the above authors obtain explicit
expressions for the flux function F (C̄) in terms of the viscosity ratio and C̄. By using
kinematic wave theory, Lajeunesse et al. (1999) predict a critical flow velocity above
which the flow becomes unstable and assumes a three-dimensional nature. This will
be discussed in more detail in § 3.3. In our case, both the Péclet number and the
aspect ratio are finite, and the viscosity varies exponentially with the concentration.
Nevertheless, for large Pe we showed in Goyal & Meiburg (2006) that this approach
still provides accurate descriptions of the tip velocities and the agreement with the
theoretical predictions. The simulation results were seen to improve with increasing
Pe. The good comparison between the theoretically predicted tip velocities and
the simulation results continues to hold for the flows with a density stratification
considered here. Goyal & Meiburg (2006) for a more detailed description of the
comparison of the tip velocities from full Stokes simulations with the predictions of
the kinematic wave description of Hele-Shaw flows.

Using the above approach in conjuction with their experimental data, Lajeunesse
et al. (1999) also delineate three distinct flow regimes in the (R, F )-plane, all of
which are present in our present simulations. Figure 4 plots the evolution of the gap-
averaged concentration for three different parameter combinations to demonstrate
the excellent qualitative agreement with the corresponding experimental observations
of Lajeunesse et al. (1999). The quasi-steady states in our simulations correspond to
their regime 3 with frontal shocks. In figure 4(a), the propagation of this frontal shock
with a constant velocity greater than the maximum Poiseuille flow velocity of 1.5, as
the gap-averaged concentration field evolves in time, is distinctly evident. This holds
true for all higher values of the gravity parameter as well, whenever a quasi-steady
concentration field develops. For small viscosity ratios and mildly negative values



364 N. Goyal, H. Pichler and E. Meiburg

of F , the self-spreading profiles of regime 1 are recovered (figure 4b), with the tip
moving with the maximum Poiseuille flow velocity.

Finally, figure 4(c) shows that for strongly stabilizing density contrasts, self-
spreading segments both ahead of and behind an internal shock are observed in our
simulations, corresponding to regime 2 in Lajeunesse et al. (1999). The concentration
fields at different times corresponding to this parameter set (F = −100, Pe= 2000 and
R =5) are shown in figure 2(c–e). We observe the emergence of a ‘spike-like’ structure,
with a continuous leakage of the less viscous fluid into the more viscous one. This
secondary, needle-shaped finger is characterized by a main finger front advancing
more slowly than the maximum velocity of the Poiseuille flow profile far ahead of the
finger. The corresponding streamline pattern in a reference frame moving with the tip
of the main finger is shown in figure 2(f). See Petitjeans & Maxworthy (1996), Chen
& Meiburg (1996) and Kuang et al. (2004) for a detailed discussion of this streamline
pattern. Similar spike structures also evolve for favourable viscosity contrasts, as long
as gravity exerts a stabilizing influence (Balasubramaniam et al. 2005).

3.2. Two-dimensional simulations: gravity-driven flows

This section describes simulations of purely gravity-driven flows without net
displacement. We impose a small initial perturbation at the interface between the two
fluids, in order to accelerate the evolution of the flow. Depending on the symmetry
of this perturbation, different transient flow configurations can result (cf. Fernandez
et al. 2002). We impose perturbations that are symmetric to the gap centreline, in
order to obtain fronts that can be compared to those evolving in displacement flows.
The temporal evolution of the concentration field for Ra = 105 and R = 0 is depicted
in figures 5(a)–5(e). The heavier fluid sinks in the centre of the cell, while the lighter
fluid rises on both sides of the central downward-moving front. Hence, the velocity
vectors in figure 5(f) corresponding to the concentration field in figure 5(e) show
the existence of a substantial reverse flow region which is absent in flows with fluid
injection. Similar to the case with fluid injection, for Rayleigh numbers exceeding
a certain R-dependent threshold a quasi-steady front evolves. Thus, for Ra > 104,
quasi-steady flow fields were usually seen to develop. Figure 6 plots the gap-averaged
concentration at different times for the flow field depicted in figure 5. Similarly to
the displacement flows, we observe the evolution of a quasi-steady front propagating
with constant velocity in the gap of the cell. A bulging of the front just behind
the tip (cf. figure 5e) leads to the non-monotonic average concentration profile in
figure 6. This effect is exhibited by displacement flows as well (cf. figure 4a) and
becomes more pronounced with increasing viscosity contrasts. At higher viscosity
contrasts, the steady two-dimensional fronts have shapes that are very similar to their
net displacement counterparts.

The characteristics of the gravity-driven fronts depend on the governing parameters
Ra and R, similarly to the dependence of displacement fronts on F , Pe and R.
Figure 7 shows the front thickness and velocity as a function of R for both a purely
gravity-driven flow and a comparable displacement flow. For the gravity driven flow,
Ra = 105. To allow a quantitative comparison, we chose the values Pe= 2000, F = 50
for the displacement flow, so that PeF =Ra, cf. (2.17). In order to make a quantitative
comparison between the front velocities for the two cases, we furthermore rescale the
velocity of the gravity-driven flow using the relation between the characteristic velocity
scales for the two situations

U ∗
displacement/U

∗
gravity = F. (3.5)



Miscible displacements in Hele-Shaw cells 365

( f ) t = 360(e) t = 360(d ) t = 280(c) t = 200(b) t = 120

–0.5 0 0.5

–1.0

0.5

0

0.5

1.0

1.5

(a) t = 20

Figure 5. Gravity-driven flow. (a–d) Evolution of the quasi-steady base state for Ra = 105

and R = 0. (e) Velocity vectors of the quasi-steady state.
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Figure 6. Gravity-driven flow. Gap-averaged concentration profiles for t = 0, 40, 80, . . . , 360,
Ra = 105 and R = 0.

In addition, we subtract out the displacement velocity along the centreline for the
displacement flow, so that figure 7(b) plots (Vtip − 1.5) for the Pe = 2000 and F = 50
simulation. The similarities between the two cases become apparent immediately
from figure 7. The front thickness decreases, while the tip velocity increases with
R for all flows. In addition, we find d0 to scale with Ra−0.5 (not shown), akin
to the corresponding scaling with Pe in displacement flows. For R =0, since only
gravitational effects are present, d0 and Vtip have almost identical values in both
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different viscosity ratios and Pe = 2000.

flow configurations. An increase in R strengthens the viscous effects relative to the
gravitational ones, so that the displacement flows show a stronger dependence on
R. In their experimental study of gravitationally unstable flows in capillary tubes
without net displacement, Kuang et al. (2004) make similar observations regarding
the velocity of the front.

3.3. Linear stability

Figure 8(a) shows the maximum growth rate σmax as a function of the gravity number
F , for Pe = 2000 and different viscosity ratios. Gravitational forces are seen to have a
strong influence on the growth rate, so that even moderately negative values of F can
completely stabilize the displacement. Thus, for R � 4, a value of F = −10 suffices
to produce a stable displacement. For even lower values of F , a quasi-steady state no
longer develops, so that a linear stability analysis cannot be performed. Conversely,
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Figure 9. Stable and unstable regions in the (R,F )-plane for Pe = 2000. Comparison
between present results and predictions by Lajeunesse et al. (1997).

positive F -values can increase the growth rate severalfold. The growth rate depends
linearly on F for the range of values investigated here.

We provided a brief overview of the kinematic wave theory approach of Lajeunesse
et al. (1999) in the limit of large Pe values in § 3.1. Lajeunesse et al. (1997, 2001)
employ this approach to predict a critical flow velocity below which the flow is stable
and primarily two-dimensional in the gap of the cell. This critical velocity in terms
of their non-dimensional variables and the corresponding gravity number parameter
from our scaling, is

Ucrit =
8e3R

(4eR − 3)(2eR − 3)2
, (3.6)

Fcrit = −12/Ucrit. (3.7)

Using this relationship, the critical value of F below which the flow is stable varies
in the range −23.9 � F � −13.7 for 7 � R � 2, respectively. Figure 9 provides a
comparison of our numerical results with this theoretical prediction. We do not obtain
steady states for F < −10, as indicated by the square symbols. Hence, we cannot
perform a stability analysis in this regime. For smaller viscosity contrasts (R < 5) and
F = −10, even though a quasi-steady state is reached, the flow is stable to spanwise
perturbations. Lajeunesse et al. (1997) mention that (3.7) only provides a lower bound
on Ucrit for instability, and formally applies to Pe → ∞. They observed an increase
in Ucrit, or correspondingly F , with Pe for Pe < 104. Since the maximum value of
Pe in our stability calculations is 2000, the predictions of Lajeunesse et al. (1997) are
consistent with the present results. In contrast to the experiments of Lajeunesse et al.
(1997, 1999) the present numerical analysis is not restricted to gravitationally stable
displacements and can explore the entire (R, F )-plane. Doing so reveals that both
two-dimensional frontal shocks and three-dimensional instabilities can occur even
for viscosity contrasts corresponding to eR < 1.5, as opposed to the corresponding
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experimental observations. For sufficiently strong gravitational forces, instability can
occur even for constant viscosity fluids (cf. the data point for R = 0 and F = 50 in
figure 9). For displacements stabilized by gravity, there exists a viscosity ratio below
which the flow is always stable to three-dimensional perturbations. This viscosity
ratio increases with decreasing F .

Figure 8(b) shows the dominant wavenumber for gravitationally stable displace-
ments with F = −10 to be around 1.3 for 5 � R � 7, corresponding to a wavelength
of 4.8 times the gap width (note that for R = 7, we were unable to obtain
converged results for F > 20). This value is substantially larger than the dominant
wavelength of about three times the gap width found by Goyal & Meiburg (2006) for
neutrally buoyant displacements, and it is consistent with the experimental findings
of Lajeunesse et al. (1997). For F > Fcrit, those authors had observed a dominant
wavelength of 5 ± 1 times the gap width for a wide range of viscosity ratios. This
weak dependence of the dominant wavelength on R for gravity-stabilized experiments
is confirmed by the linear stability results. Hence, for negative F -values, the situation
arises in which the instability itself is caused by the unfavourable viscosity contrast,
whereas the dominant wavelength of the instability is determined by the stable density
stratification.

For displacements with an unstable density stratification, the situation is opposite, in
that variations in F affect the dominant wavelength only weakly, while the influence
of R is much stronger. Figure 8(b) also displays another important feature. The
dominant wavenumber, for unstable density stratifications, increases from R = 0 to
R = 2 and subsequently decreases. Hence initially, an increase in the viscosity contrast
leads to shorter wavelengths of perturbation. However, beyond R = 2, and for large
values of F the most unstable wavelength increases with R. This is in contrast to the
Rayleigh–Taylor instability in a vertical Hele-Shaw cell, for which Goyal & Meiburg
(2004) found that the dominant wavelength decreases monotonically with increasing
R. This demonstrates the qualitative transition between the gravitational and viscous
regimes. At small values of R, even in displacement flows, wavelength selection
is dictated by gravitational effects, whereas at higher viscosity contrasts, even for
strongly destabilizing density differences, it is dominated by the unfavourable viscosity
contrast, and not by the gravitational instability. In order to analyse the transition
from gravitational to viscously dominated instability, it is instructive to analyse the
eigenfunctions. Figures 10(a)–10(c) depict the concentration and spanwise velocity
eigenfunction contours, along with the perturbation velocity vectors in the cross-gap
plane of the Hele-Shaw cell, for Pe = 2000, F = 50 and R = 0. Figures 10(d)–10(f) plot
the corresponding eigenfunctions for identical values of Pe and F , but with R = 5.
A comparison of figures 10(a) and 10(d) shows that, similar to neutrally buoyant
displacements, the instability still grows, centred around the tip of the displacement
front. The increase in R from 0 to 5 leads to a marked reduction in the vertical extent
of the concentration eigenfunctions, accompanied by a strong increase in the level
of the instability (cf. figure 8a). The spanwise velocity eigenfunction for the purely
gravitational instability extends across the entire gap, with a negative perturbation
behind the front and a positive value ahead of the front. In contrast, for R = 5,
the negative region of û is confined to the less viscous fluid. The viscous instability
tends to create a perturbation flow across the gap, as indicated by the velocity vectors
in figure 10(f), while figure 10(c) shows that the gravitational instability generates a
perturbation velocity primarily aligned with the gravity vector.

A quantitative comparison of the instabilities in purely gravity-driven and
displacement flows, respectively, is provided in figure 11. Shown are the growth rates
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Figure 10. Perturbation eigenfunctions and velocity vectors for Pe = 2000, F = 50 and (a–c)
R = 0, and (d–f) R = 5, superimposed on the base concentration fields provided in grey shading.
(a, d) Concentration eigenfunction ĉ. (b, e) Spanwise velocity eigenfunction û. (c, f) Perturbation
velocity vectors in the (y, z)-plane. Solid (dashed) lines indicate positive (negative) values.
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Figure 11. Comparison of (a) the growth rate, and (b) the wavenumber of the dominant
perturbation mode as a function R, for the cases with and without a net displacement. �,
Ra = 105; �, F = 50, Pe = 2000.

and wavenumbers of the dominant mode for Ra = 105, and for the corresponding
case of Pe= 2000 and F = 50. Here, the growth rates of the gravity-driven flow have
been rescaled by using (3.5) between the characteristic time scales. For R = 0, this
rescaling results in nearly identical growth rates. As the viscosity contrast between the
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Figure 12. (a) Growth rate and (b) most unstable wavenumber as a function of Pe for
R = 5 and different values of F . Both quantities depend only weakly on Pe.

two fluids is increased, the displacement flow becomes comparatively more unstable.
This is consistent with our expectation, as the viscous instability reinforces the purely
gravitational one. The wavelength of the dominant perturbation mode is determined
largely by the viscosity ratio, as mentioned previously. The transition from a purely
gravitational instability to one governed by both viscous and gravitational effects is
reflected by the peak of each curve at R =1.

Goyal & Meiburg (2006) showed that for neutrally buoyant displacements, the
dominant wavelength increases weakly with Pe. Figure 12 plots the dominant mode
growth rate and wavenumber as a function of Pe for R = 5 and different gravity
numbers. The results indicate that in displacements governed by both viscosity and
density contrasts, both the growth rate and the dominant wavenumber depend only
weakly on Pe, up to Pe = 2000. As mentioned in Goyal & Meiburg (2006), numerical
considerations prevent us from exploring higher values of Pe.

4. Discussion and conclusions
In Goyal & Meiburg (2006), we compared the growth rates and dominant

wavenumbers of neutrally buoyant Stokes flow displacements with corresponding
Darcy results of Tan & Homsy (1986). Bacri et al. (1992) and Manickam & Homsy
(1995) extend the Darcy analysis to vertical flows and derive analytical dispersion
relations for step concentration profiles in terms of the endpoint fluid properties.
They also identify a critical displacement velocity above which the flow is unstable.
We recast their relation in terms of our dimensionless parameters to obtain

σ =
β

24Pe

{
(RPe − 12β) +

FPe

6(1 + eR)
−

√
144β2 + 24RβPe + 4

FβPe

(1 + eR)

}
. (4.1)

Figure 13 shows the growth rates and dominant mode wavenumbers for both Stokes
and Darcy analyses as a function of F and R for Pe = 500. Although the overall
quantitative agreement is poor, the Darcy analysis correctly predicts an increase in
the growth rate with F and R. On the other hand, it predicts a continuous strong
linear increase of the dominant wavenumber with R and F , while the Stokes analysis
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Figure 13. Comparison of the present Stokes flow results (solid lines) with (a) growth rates
and (b) wavenumbers based on Darcy’s law (dashed lines) for Pe = 500 and different viscosity
ratios (Manickam & Homsy 1995). �; R = 2; �, R = 3; �, R = 4; ×, R = 5.

shows the wavenumber to depend very weakly on R, and to be nearly independent
of F , for F > 0.

In conclusion, the Stokes flow analysis of miscible displacements in vertical Hele-
Shaw cells reveals several features of the instability. For the range of parameters
investigated, both the growth rate and the dominant wavenumber depend only weakly
on Pe. The growth rate varies strongly, and nearly linearly, with F , so that even a
moderately stable density stratification can stabilize a viscously unstable displacement.
Both the growth rate and the dominant wavelength increase with the viscosity ratio
R. For unstable density stratifications, the dominant wavelength is nearly independent
of F . On the other hand, it increases strongly for stable density stratifications, which
resolves the discrepancy between the experiments of Lajeunesse et al. (1997) and the
analysis of neutrally buoyant displacements by Goyal & Meiburg (2006). Finally,
the kinematic wave theory of Lajeunesse et al. (1999) is seen to capture the stability
limit quite accurately, while the Darcy analysis misses important aspects of the
instability.
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